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space is locally flat. Our expression for energy is there
fore in conformity with criterion (d) as well. 

IV. CONCLUSION 

Starting from the viewpoint that the expression for 
energy should be represented by the generator of transla
tions of a preferred set of space-like coordinate surfaces, 
we were led to the introduction of the minimal vector 
fields as preferred descriptors. The expression for energy 
density so obtained has the virtue of being generally 
applicable, of yielding a positive-definite value for the 
energy, of corresponding to the preferred energy expres
sions of Lorentz-covariant theories, and of being in 
conformity with Mach's principle to the extent that we 
may conclude that empty spaces (i.e., those for which 
the total energy vanishes) are locally flat. 

The energy density constructed in this paper still has 
one essential defect in our opinion. In a local neighbor
hood there is a high degree of arbitrariness in the con
struction of families of space-like minimal surfaces, and 
a consequent high degree of arbitrariness in the defini-

1. INTRODUCTION 

MANY attempts have been made to correlate high-
energy experimental data in terms of Regge poles 

which are generalized bound states and resonances in 
the complex angular-momentum plane.1 There is no 
rigorous proof of the existence of Regge poles in rela-
tivistic field thory. Therefore, information on the pos
sible trajectory [In particular, the energy dependence of 
the complex angular momentum a(t) in field theory] is 
inferred from potential scattering, where the existence 
of Regge poles rests on a secure foundation.2 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

f Also at Northwestern University, Evanston, Illinois. 
1 See, for example, G. F. Chew and S. C. Frautschi, Phys. Rev. 

Letters 7, 394 (1961) and 8, 41 (1962). 
2 T . Regge, Nuovo Cimento 14, 951 (1959); 18, 947 (1960). 

tion of our energy density. We can attempt to reduce 
this arbitrariness by employing appropriate boundary 
conditions. In fact, we know from the work of reference 
10 that for asymptotically flat space-times it is essential 
that the descriptor fields be asymptotically semi-Killing 
if our "generalized energy" is to be well defined, and is 
to coincide in value with the usual expression for the 
mass of asymptotically Schwarzschild solutions. How
ever, it is evident that such attempts to reduce the 
arbitrariness of the energy expression lead to definitions 
which are necessarily nonlocal. Perhaps this is the best 
that one can hope for, but certainly a reasonably unique 
local definition of energy density would have been 
preferable. 

For spatially closed space-times it is evident from 
Eqs. (2) and (3) that the total generalized energy 
vanishes. We thus see that global families of closed 
minimal surfaces with /32=0 can only be found for the 
(trivial) locally flat space-times. This may be regarded 
by some as a serious drawback of our construction. An 
expression suitable for spatially closed space-times will 
be developed in a subsequent paper. 

Several authors3,4 have demonstrated that it is pos
sible to obtain some information on the Regge trajectory 
of a(t) in field theory, within the framework of the 
ladder approximation in the crossed channel. 

The purpose of this paper is to re-examine the pos
sible Regge trajectory in field theory, within the ladder 
approximation. A comparison of the present approach 
with perturbation theory shows that the higher-order 
terms in the coupling constant make very important 
contributions to the trajectory. A simple derivation of 
the trajectory equation is given in Sec. 2. The trajectory 
is discussed in Sec. 3, the case a (0) is treated in Sec. 4, 
and finally a summary is given in Sec. 5. 

3 L. Bertocchi, S. Fubini, and M. Tonin, Nuovo Cimento 25,626 
(1962), hereafter called BFT. This contains references to earlier 
work. 

4 B. W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962). 
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The form of the Regge trajectory, the graph of the complex angular momentum a (t) as a function of the 
square of the momentum transfer /, is studied in field theory within the framework of the ladder approxima
tion in the crossed channel. To order g2, the trajectory is unbounded in the region /«4w2 , but inclusion of 
the higher-order terms in g2 removes the divergence and leads to a smooth trajectory that resembles that 
expected from potential scattering. The various relations between g2, a(f), and the exchanged mass are 
discussed. 
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2. DERIVATION OF THE EQUATION FOR THE 
REGGE TRAJECTORY 

Consider first the elastic scattering amplitude of 
scalar pions of mass m and momenta p and q into those 
of p' and q' in the s channel. The extension to other 
cases is straightforward. In this model it is assumed 
that the dominant contribution to the imaginary part 
of the scattering amplitude comes from the sum over all 
the ladder graphs of Fig. 1 in the t channel, where the 
rungs represent a quantity of total mass (s0)1/2 with total 
angular momentum zero. 

The square of the total energy is s= (p+q)2 and the 
square of the momentum transfer is t= (q—q')2 in the 5 
channel. The imaginary part of the scattering amplitude 
in Fig. 1 can be written as 

P P' 

A(S9t): = L An(s,t). 
n-=0 

In the forward direction / = 0 , A(sfl) is related to the 
total cross section through the optical theorem. 

In the asymptotic limit s —> <x>? the amplitude A (s,t) 
satisfies the homogeneous integral equation3 

ds' rdk2dk'2A(s',t,k2
yk

f2) r r*ds' rdkHV 
A(s,t)= dso — I 

J Jo s J (k2-(k2-m2)(kf2-m2) 

Xtf(v'A*o,*2 ,*'2), (1) 
where 

Kis/^k2^2) 

= \d?ni 
(2TT) 4 J 

(r+n)2+k2 
s' s0s' 1 

-m2—+ 
5 S — S'J 

Xd\ (r-n)2+kf2-m2-+ \AQ(sQjk\k% 
L s s—sfJ 

(2) 

Ao(s0) = Trg2f(so). 

The units have been so chosen that fi=c=l. 
The inhomogeneous term AQ(S), which contributes to 

the low-energy scattering, is assumed to go to zero 
faster than the remainder and has been dropped. In this 
model, unitarity in the s channel is violated, but it is 
satisfied in the t channel for 4 w 2 ^ / ^ 16m2. The 5 func
tions in Eq. (2) express the boundaries of the phase 
space which were found by BFT. 

I t will now be assumed that ^4OC?Q,&2,&/2) is not 
changed from its physical amplitude AQ(SQ), although 
the two incoming pions are off the mass shell. If the 
scattering amplitude in the s channel is dominated at 
high energy by a single Regge pole of angular mo
mentum a, then as 5 —-> oo 

s - H + W + 
+ 

q I q* 

FIG. 1. Ladder graphs for the imaginary part of the 
scattering amplitude. 

I t is here inferred from potential scattering that a de
pends on /. This t is the squared-momentum transfer (for 
2^0) in the s channel and also is the square of the total 
energy (for t^O) in the t channel. We extract out this 
important factor sa(t). The integral equation (1) admits 
solutions of this form.3 

From the energy denominators of Eq. (1), it is clear 
that the important contribution comes from the low 
values of k2 and k'2. Further, A {s'\t,k2ft2) is dominated 
by the factor sf<xit) and is expected to be insensitive to 
the values of k2 and k'2 in the high-energy limit, so that 
k2 and k'2 may be put on the mass shell.5 Consequently, 
let us examine the solution of Eq. (1) for the case in 
which 

A (*', W 2 ) -> 5/tfC«0(<,f»,,w2) = Ja(<)0(O. (4) 

The range of integration of sf is from 0 to s. Therefore, 
it is assumed that Eq. (4) can be used even outside the 
asymptotic region. The approximation of putting the 
pion momenta on the mass shell differs from standard 
perturbation theory in that an expansion in terms of the 
coupling constant is not implied. Its relationship with 
perturbation theory is discussed later. The high-energy 
limit of the contribution from the two lowest graphs in 
Fig. 1 agrees with this approximation. 

After Eqs. (3) and (4) are substituted into Eq. (1) 
and the integration over k2 and k'2 has been carried out, 
the integration variable s' is changed to x—s'/s. The 
result is 

s2 r r1 f1 r t 
1 = ds0f(so) dz I dxxa\ — ( 1 - s 2 ) 

32TT2J J-i JO L 4 

x ( i - * ) -
SoX 

\-x 
-m2(l — x) (5) 

A(s,t)-+sa<-»4>(t). (3) 

This interesting equation, which relates a (t) with g2, has 
been derived from Eq. (1) in BFT by using a spectral 
representation of <j>(t,k2fi2) and taking the lowest-order 
approximation of an iteration method. I t can be shown 
by differentiating Eq. (5) that da(t)/dt>0 for t^ 4, and 
that a(t) becomes complex when t^A. 

6 The quantities k2 (and k'%) are bounded in the integrand by 
m 2 ^ - ( £ 2 - w 2 ) ^ o o , etc. We have put &2-m2=0, k'2-m2=Q 
inA(s',t,k2,k'2). 
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One can see from Eq. (5) that (a) when g2 is fixed, an 
increase in s0 leads to a smaller a (t) for a(t)>0, / ^4wr ; 
(b) when a (t) is fixed, an increase in s0 leads to a larger 
value of g2; (c) when sQ is fixed, an increase in g2 leads 
to a larger value of a(t) for a ( 0 > 0 , ^ 4 m 2 ; and (d) a 
larger value of g2 leads to a lower resonant energy tR, 
i.e., to a larger binding energy. All of these features are 
expected from a physical point of view. 

Rect(t) 

3. DISCUSSION OF THE REGGE TRAJECTORY 

The trajectory, Eq. (5), can be rewritten as 

dz 

-z2)+m2 

g2 r rl dz 
1 = dsQf(so) 

327r2i j L x - M l -

r1 r 
X / dx 

Jo x2—\ 
where 

2#cosX+l 

cosX=l— 
So 

2[_-\t{\-z2)+m2~] 

Integration over x yields 

dz 

-z2)+m2 

(6) 

(V) 

£ f C1 dz 
1 = dsof(so) — 

32TT27 J-i-llO—z 

X I 
sin^X r l 

n-i sinX .n+a n-\-a-\-lJ 
(8) 

This clearly shows that there is a singularity, whenever 
a is a negative integer. The series converges for a (t) > — 1. 
We shall separate out the singularity at a= — 1 and 
shall not consider the others. 

Consider now the simple case in which only a discrete 
squared mass a is exchanged, i.e., the case f(s0) = d($o— a). 
Integration over So, separation of the singularity at 
a— — l, and rearrangement of the remainder (which is 
regular at a = — 1) yields 

a + l = 
32T2 -lt(l-z2)+m2 

(a+l)g2 « Rn(t,a) 

where 

R»(t,a)= / dz-

32w2 n - m + a + 1 

[sin(^+l)X—sinwX]/sinX 

(9) 

- i / ( l - 2 2 ) + W2 

Equation (9) can be rewritten as 

dz 
X+1-- • - I f - : / 

( l - 2 2 ) + W 2 ' 

g* £, Rn(l,a) r g2 £ Rn(l,a)-\ 

L 327r 2 n- . i M +a+lJ 
(10) 

FIG. 2. Plot of the real part of the complex angular momentum 
as a function of t, where / is the squared-momentum transfer in the 
s channel (/ ̂  0) or the square of the total energy in the t channel 
with the exchanged mass a — 4. The dashed portion of the curve is 
based on a rough estimate. 

I t is not convenient to use Eq. (10) to obtain the Regge 
trajectory since the right-hand side also depends on a. 

To the order of g2, one has from Eq. (10) that 

a = - l + 
32TT2 J - l — i 

1 

t(l-z2)+m2 (11) 

Equation (11) is identical to Eq. (29) of reference 4. 
The trajectory given by Eq. (11) goes to infinity at 
threshold, 2=4w2, a behavior which is characteristic of 
this order of perturbation theory. However, the second 
term in the denominator of Eq. (10), which contains 
the higher-order terms of g2, removes the divergence in 
Eq. (11) and leads to a smooth trajectory across the 
region t^Am2. Note that Eq. (11) is independent of the 
exchanged squared mass a. 

In order to obtain the trajectory, put f(s0) = 8(so—a) 
in Eq. (5). The result in units m2= 1 is 

where 

1 = / dx I(t,x,a), 
32TT2JO 1-X 

I(t,x,a)= / 
dz 

lt(l-z2)+l+ax/(l-x)2 

(12) 

(13) 

The integration of Eq. (12) is carried out separately for 
the regions t^ 0, 0 ̂  / ̂  4, and / ̂  4. In order to illustrate 
the behavior of the Regge trajectory, the numerical plot 
for the case a = 4 is given in Fig. 2. The plot for other 
values of a can be treated similarly. When the exchanged 
squared mass a is increased, one finds that a stronger 
coupling strength yields the same a(0). The coupling 
constant is fixed so that a (0) = 1. This is consistent with 
constant total cross section at high energies. The value 
of a(t) is zero at ^ — 90. Rough estimates for t^4 indi
cate that Rea(t) is continuous and that Ima(t) develops 
slowly. 

4. THE CASE * = 0 

The case of £=0 is singled out because the total cross 
section at high energy is related to a(0) and the calcula-
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tions can be carried out in closed form. For o=4, t=0, 
Eqs. (6), (10), and (11), respectively, become 

16TT2 r1 z««»-xa«»+1 

= / dx— — , (14) 
g2 Jo (1+xY 

g2/16jr2 

a(0)+1 = ' 
l - (gVl6i i*)£{(- l )"(2n+l) / [»4*(0)+l]} 

(15) 

a (0 )+ l = gVl67r2. (16) 

Equations (14) and (15), which relate a(0) to g2, are 
equivalent. A larger value of g2 corresponds to a larger 
value of a(0). If one sets a(0) = l, then Eqs. (14) and 
(15) both lead to gV16**=12.6, but Eq. (16) leads to 
g2/167r2=2. This difference in the value found for g2 is 
due to the second term in the denominator of Eq. (15). 
For a(0) = l, we find from Eq. (10) that g2/16ir2 de
creases smoothly from 12.6 to 0 as a is reduced from 4 to 
0 as noted in Sec. 2. When a ~ l the Eqs. (14) to (16) 
lead to the same value g2/16w2=2. For a(0)> — 1, 
g2/16?r2 decreases similarly from an upper bound re
stricted by the value of a (0) to 0 as a is reduced from a 
certain value to 0. For the case a=0 which corresponds 
to an exchange of scalar photons, the only possible value 
of g2 is zero independent of the value of a(0). 

5. SUMMARY 

The unitarity and analyticity of the S matrix6 imply 
a ( 0 ) ^ l . In this specific model, this condition puts an 
upper bound on the possible values of the coupling 
strength. Specifically, a(0)^am a x(0)=l leads to g2 

^ GrOmax, because the integral in Eq. (14) is positive 
definite. Thus, the existence of the Pomeranchuk pole 

6 M. Froissart, Phys. Rev. 123, 1053 (1961). 

with a(0) (0) implies the existence of an inter
action with g2= (g2)max. This fact in turn supports the 
idea that the strength of an interaction is as strong as 
possible, as suggested by Chew and Frautschi.1,7 

In our approximation, all the ladder diagrams in 
which the particle momenta k2 and k'2 in A (s',t,k2,kf2) 
are on the mass shell have been summed to all orders in 
g2. In the language of perturbation theory, our g2 ap
proximation is rigorous but our g4 and higher-order 
terms are approximate results of the ladder approxi
mation. 

To order g2, the trajectory is given by Eq. (11). This 
equation fails in the region 2^4, because the integral 
diverges there. On the other hand, higher-order terms in 
g2 included in Eq. (5) lead to a reasonable Regge 
trajectory in the whole range of values of L At t= — <&, 
a is —1. Beyond £=4, a(t) is complex and Rea(t) ap
proaches — 1 as t goes to + oo. Thus, the Regge tra
jectory obtained here resembles that from potential 
scattering.8 This behavior of the present crude model 
suggests that it might be possible to extend the ideas of 
Regge into relativistic field theory. 

Note added in proof. Equality of Eq. (40) of reference 4 
with Eq. (5) can be shown by changing the variable of 
integration z to sf by z= {sf—4w2—[4$o#/(l—#)2]A'}1/2 

in Eq. (5) and then changing the order of integration. 
The equality was first proven by C. Goebel by finding 
the jump of Eq. (5) across the cut 4w2^s<oo (private 
communication). 
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